Subgradient Regularization: A Descent-Oriented Subgradient Method for Nonsmooth Optimization

Hanyang Li

IEOR, UC Berkeley

Joint work with Prof. Ying Cui

ICCOPT 2025

Descent directions in nonsmooth optimization

The steepest descent direction at x

$$g_x = - \underset{v \in \partial f(x)}{\operatorname{argmin}} \|v\|$$

• If f is smooth, $g_x = -\nabla f(x)$

Descent directions in nonsmooth optimization

The steepest descent direction at x

$$g_x = - \underset{v \in \partial f(x)}{\operatorname{argmin}} \|v\|$$

- If f is smooth, $g_x = -\nabla f(x)$
- Generally, g_x is discontinuous in x
 - zigzag phenomenon
 - may converge to non-stationary points

Descent directions in nonsmooth optimization

The steepest descent direction at x

$$g_x = - \underset{v \in \partial f(x)}{\operatorname{argmin}} \|v\|$$

- If f is smooth, $g_x = -\nabla f(x)$
- Generally, g_x is discontinuous in x
 - zigzag phenomenon
 - may converge to non-stationary points
- Improvement: $g_x \xrightarrow{\text{regularization}} ?? \text{ (stable in } x\text{)}$

1. Goldstein-type methods

Idea: ϵ -neighborhood of x^k stabilizes the direction

Goldstein
$$\epsilon$$
-subdifferential $\partial_{\epsilon}^G f(x) = \operatorname{conv} \left\{ \bigcup_{\|z-x\| \leq \epsilon} \partial f(z) \right\}$

1. Goldstein-type methods

Idea: ϵ -neighborhood of x^k stabilizes the direction

Goldstein
$$\epsilon$$
-subdifferential $\partial_{\epsilon}^G f(x) = \operatorname{conv} \left\{ \bigcup_{\|z-x\| \leq \epsilon} \partial f(z) \right\}$

$$x^{k+1} = x^k - \epsilon \frac{g_k}{\|g_k\|} \quad \text{with} \quad g_k = \underset{v \in \partial_{\epsilon}^G f(x^k)}{\operatorname{argmin}} \|v\|$$

1. Goldstein-type methods

Idea: ϵ -neighborhood of x^k stabilizes the direction

Goldstein
$$\epsilon$$
-subdifferential $\partial_{\epsilon}^G f(x) = \operatorname{conv} \left\{ \bigcup_{\|z-x\| \leq \epsilon} \partial f(z) \right\}$ -0.7

$$x^{k+1} = x^k - \epsilon \frac{g_k}{\|g_k\|} \quad \text{with} \quad g_k = \underset{v \in \partial_{\epsilon}^G f(x^k)}{\operatorname{argmin}} \|v\|$$

Practical issue: computation of g_k

approx.
 — Gradient Sampling [Burke, Lewis, Overton '05],
 INGD [Zhang, Lin, Jegelka, Sra, Jadbabaie '20],
 NTD [Davis, Jiang '23], ...

2. Bundle-type methods

"Bundle": subgradients & function values over past iterations

$$\left\{ v_1 \in \partial f(x^1), v_2 \in \partial f(x^2), \dots, v_k \in \partial f(x^k) \right\}$$

$$\left\{ f(x^1), f(x^2), \dots, f(x^k) \right\}$$

2. Bundle-type methods

"Bundle": subgradients & function values over past iterations

$$\left\{ v_1 \in \partial f(x^1), v_2 \in \partial f(x^2), \dots, v_k \in \partial f(x^k) \right\}$$

$$\left\{ f(x^1), f(x^2), \dots, f(x^k) \right\}$$

$$x^{k+1} = x^k - \alpha_k g_k$$

- g_k is a convex combination of $\{v_1, v_2, \dots, v_k\}$
- $f(x^i)$ closer to $f(x^k) \rightarrow \text{larger weights for } v_i$

2. Bundle-type methods

"Bundle": subgradients & function values over past iterations

$$\left\{ v_1 \in \partial f(x^1), v_2 \in \partial f(x^2), \dots, v_k \in \partial f(x^k) \right\}$$

$$\left\{ f(x^1), f(x^2), \dots, f(x^k) \right\}$$

$$x^{k+1} = x^k - \alpha_k g_k$$

- g_k is a convex combination of $\{v_1, v_2, \dots, v_k\}$
- $f(x^i)$ closer to $f(x^k) \rightarrow$ larger weights for v_i

Idea: ϵ -neighborhood of x^k stabilizes the direction ϵ -neighborhood of $f(x^k)$

Perspectives via "enlarged subdifferential"

$$x^{k+1} = x^k - \alpha_k \cdot g_k$$
 with $g_k = \underset{v \in S_k}{\operatorname{argmin}} \|v\|$

Methods	Convex set S_k
Steepest descent	$\partial f(x^k)$
Goldstein-type	$\partial_{\epsilon_k}^G f(x^k) = \operatorname{conv}\left\{ \bigcup_{\ z-x^k\ \le \epsilon_k} \partial f(z) \right\}$
Bundle-type (for convex f)	$\partial_{\epsilon_k} f(x^k) = \left\{ v \mid f(z) \ge f(x^k) + v^{T}(z - x^k) - \epsilon_k, \forall z \right\}$

Key message:

To get a stable descent direction,

select & combine (sub)gradients in some "neighborhood"!

Key message:

To get a stable descent direction,

select & combine (sub)gradients in some "neighborhood"!

Questions:

- What is the general principle?
- What if more structures are known?

Part 1: A unifying principle for constructing stable descent directions

For a set-valued mapping $S: \mathbb{R}^n \rightrightarrows \mathbb{R}^m$

Outer & Inner limits:

$$\limsup_{x \to \bar{x}} S(x) = \bigcup_{x^k \to \bar{x}} \left\{ \text{accumulation points of } \left\{ S(x^k) \right\}_{k \in \mathbb{N}} \right\}$$

$$\liminf_{x \to \bar{x}} S(x) = \bigcap_{x^k \to \bar{x}} \left\{ \text{limit points of } \left\{ S(x^k) \right\}_{k \in \mathbb{N}} \right\}$$

For a set-valued mapping $S: \mathbb{R}^n \rightrightarrows \mathbb{R}^m$

Outer & Inner limits:

$$\limsup_{x \to \bar{x}} S(x) = \bigcup_{x^k \to \bar{x}} \left\{ \text{accumulation points of } \left\{ S(x^k) \right\}_{k \in \mathbb{N}} \right\}$$

$$\lim_{x \to \bar{x}} \inf S(x) = \bigcap_{x^k \to \bar{x}} \left\{ \text{limit points of } \left\{ S(x^k) \right\}_{k \in \mathbb{N}} \right\}$$

For a set-valued mapping $S: \mathbb{R}^n \rightrightarrows \mathbb{R}^m$

Outer & Inner limits:

$$\limsup_{x \to \bar{x}} S(x) = \bigcup_{x^k \to \bar{x}} \left\{ \text{accumulation points of } \left\{ S(x^k) \right\}_{k \in \mathbb{N}} \right\}$$

$$\lim_{x \to \bar{x}} \inf S(x) = \bigcap_{x^k \to \bar{x}} \left\{ \text{limit points of } \left\{ S(x^k) \right\}_{k \in \mathbb{N}} \right\}$$

• Outer semi-continuous (osc) if $\limsup_{x \to \bar{x}} S(x) = S(\bar{x})$

 $S(\,\cdot\,)$ is osc, not continuous

For a set-valued mapping $S: \mathbb{R}^n \rightrightarrows \mathbb{R}^m$

Outer & Inner limits:

$$\lim \sup_{x \to \bar{x}} S(x) = \bigcup_{x^k \to \bar{x}} \left\{ \text{accumulation points of } \left\{ S(x^k) \right\}_{k \in \mathbb{N}} \right\}$$

$$\lim_{x \to \bar{x}} \inf S(x) = \bigcap_{x^k \to \bar{x}} \left\{ \text{limit points of } \left\{ S(x^k) \right\}_{k \in \mathbb{N}} \right\}$$

• Outer semi-continuous (osc) if $\limsup_{x \to \bar{x}} S(x) = S(\bar{x})$

Facts: $\partial f(\cdot)$ is osc;

 $\partial_{\epsilon} f(\,\cdot\,)$ is continuous for every fixed $\epsilon>0$ when f is convex

 $S(\,\cdot\,)$ is osc, not continuous

Descent-oriented subdifferential

A map $G: \mathbb{R}^n \times (0,\infty) \Rightarrow \mathbb{R}^m$ is a descent-oriented subdifferential for f if

(G1) Outer limit jointly in (x, ϵ) stays in the Clarke subdifferential:

$$\limsup_{\epsilon \downarrow 0, x \to \bar{x}} G(x, \epsilon) \subset \partial f(\bar{x})$$

(G2) Separate limit yields the minimal norm subgradient:

$$\lim_{\epsilon \downarrow 0} \left(\limsup_{x \to \bar{x}} G(x, \epsilon) \right) = \operatorname{argmin} \{ ||v|| \mid v \in \partial f(\bar{x}) \}$$

Descent-oriented subdifferential

A map $G:\mathbb{R}^n imes (0,\infty)
ightharpoonup \mathbb{R}^m$ is a descent-oriented subdifferential for f if

(G1) Outer limit jointly in (x, ϵ) stays in the Clarke subdifferential:

$$\limsup_{\epsilon \downarrow 0, x \to \bar{x}} G(x, \epsilon) \subset \partial f(\bar{x})$$

(G2) Separate limit yields the minimal norm subgradient:

$$\lim_{\epsilon \downarrow 0} \left(\limsup_{x \to \bar{x}} G(x, \epsilon) \right) = \operatorname{argmin} \{ ||v|| \mid v \in \partial f(\bar{x}) \}$$

Sufficient conditions for (G2):

$$\limsup_{x \to \bar{x}} G(x, \epsilon) = G(\bar{x}, \epsilon), \ \forall \epsilon > 0 \quad \text{and} \quad \lim_{\epsilon \downarrow 0} G(\bar{x}, \epsilon) = \underset{v \in \partial f(\bar{x})}{\operatorname{argmin}} \|v\|$$

Descent-oriented subdifferential

A map $G: \mathbb{R}^n \times (0,\infty) \Rightarrow \mathbb{R}^m$ is a descent-oriented subdifferential for f if

(G1) Outer limit jointly in (x, ϵ) stays in the Clarke subdifferential:

$$\limsup_{\epsilon \downarrow 0, x \to \bar{x}} G(x, \epsilon) \subset \partial f(\bar{x})$$

(G2) Separate limit yields the minimal norm subgradient:

$$\lim_{\epsilon \downarrow 0} \left(\limsup_{x \to \bar{x}} G(x, \epsilon) \right) = \operatorname{argmin} \{ ||v|| \mid v \in \partial f(\bar{x}) \}$$

• The minimal norm subgradient map

$$G: (x, \epsilon) \mapsto \operatorname{argmin}\{||v|| \mid v \in \partial f(x)\}$$

violates (G2)!

Examples of descent-oriented subdifferential

A map $G:\mathbb{R}^n imes (0,\infty)\Rightarrow\mathbb{R}^m$ is a descent-oriented subdifferential for f if

- (G1) $\limsup_{\epsilon \downarrow 0, x \to \bar{x}} G(x, \epsilon) \subset \partial f(\bar{x})$
- (G2) $\lim_{\epsilon \downarrow 0} \left(\limsup_{x \to \bar{x}} G(x, \epsilon) \right) = \operatorname{argmin}\{ ||v|| \mid v \in \partial f(\bar{x}) \}$
- Goldstein direction:

$$G: (x, \epsilon) \mapsto \operatorname{argmin} \{ ||v|| \mid v \in \partial_{\epsilon}^G f(x) \}$$

Bundle direction (when f is convex):

$$G: (x, \epsilon) \mapsto \operatorname{argmin} \{ ||v|| \mid v \in \partial_{\epsilon} f(x) \}$$

 $^{\circ}$ Gradient of Moreau envelope (when f is weakly convex):

$$G: (x, \epsilon) \mapsto \nabla e_{\epsilon} f(x)$$
 with $e_{\epsilon} f(x) := \inf_{z} \left\{ f(z) + (2\epsilon)^{-1} ||z - x||^2 \right\}$

Existence of descent directions

A map $G:\mathbb{R}^n imes (0,\infty)\Rightarrow\mathbb{R}^m$ is a descent-oriented subdifferential for f if

- (G1) $\limsup_{\epsilon \downarrow 0, x \to \bar{x}} G(x, \epsilon) \subset \partial f(\bar{x})$
- (G2) $\lim_{\epsilon \downarrow 0} \left(\limsup_{x \to \bar{x}} G(x, \epsilon) \right) = \operatorname{argmin}\{ ||v|| \mid v \in \partial f(\bar{x}) \}$

Proposition: For nonstationary point x and constant $\alpha \in (0,1)$,

$$f(\bar{x} - \eta g) \le f(\bar{x}) - \alpha \eta \|g\|^2, \qquad \forall g \in \limsup_{x \to \bar{x}} G(x, \epsilon),$$

holds for sufficiently small ϵ and η .

A descent-oriented subgradient method

else set $\epsilon_{k+1,0} = \epsilon_{k,0}$ and $\nu_{k+1} = \nu_k$

```
Given a descent-oriented subdifferential G: \mathbb{R}^n \times (0,\infty) \rightrightarrows \mathbb{R}^m for k=0,1,\cdots for i=0,1,\cdots Generate a direction g^{k,i} \in G(x^k,\epsilon_{k,0}2^{-i}) if \exists \eta_k \in \left\{ \epsilon_{k,0}, \cdots, \epsilon_{k,0}2^{-i} \right\} with f(x^k - \eta_k g^{k,i}) \leq f(x^k) - \alpha \eta_k \|g^{k,i}\|^2 \Big\} line-search if \|g^{k,i}\| \leq \nu_k Update \epsilon_{k+1,0} = \epsilon_{k,0}/2 and \nu_{k+1} = \nu_k/2
```

A descent-oriented subgradient method

Given a descent-oriented subdifferential $G: \mathbb{R}^n \times (0,\infty) \Rightarrow \mathbb{R}^m$

for
$$k = 0, 1, \cdots$$

```
\begin{aligned} &\text{for } i=0,1,\cdots\\ &\text{Generate a direction } g^{k,i}\in G(x^k,\epsilon_{k,0}\,2^{-i})\\ &\text{if } \exists \eta_k\in\left\{\epsilon_{k,0},\cdots,\epsilon_{k,0}\,2^{-i}\right\} \text{ with } f\big(x^k-\eta_kg^{k,i}\big)\leq f(x^k)-\alpha\eta_k\|g^{k,i}\|^2\\ &\text{Update } x^{k+1}=x^k-\eta_kg^{k,i} \text{ and } \mathbf{break} \end{aligned} \right\}^{\textit{line-search}}
```

if
$$\|g^{k,i}\| \le \nu_k$$

Update $\epsilon_{k+1,0} = \epsilon_{k,0}/2$ and $\nu_{k+1} = \nu_k/2$
else set $\epsilon_{k+1,0} = \epsilon_{k,0}$ and $\nu_{k+1} = \nu_k$

The inner-loop terminates for sufficiently large i (\exists descent directions at x^k)

A descent-oriented subgradient method

Given a descent-oriented subdifferential $G: \mathbb{R}^n \times (0,\infty) \Rightarrow \mathbb{R}^m$

for
$$k = 0, 1, \cdots$$

$$\begin{aligned} &\text{for } i=0,1,\cdots\\ &\text{Generate a direction } g^{k,i}\in G(x^k,\epsilon_{k,0}\,2^{-i}\,)\\ &\text{if } \exists \eta_k\in\left\{\epsilon_{k,0},\cdots,\epsilon_{k,0}\,2^{-i}\right\} \text{ with } f\big(x^k-\eta_kg^{k,i}\big)\leq f(x^k)-\alpha\eta_k\|g^{k,i}\|^2\\ &\text{Update } x^{k+1}=x^k-\eta_kg^{k,i} \text{ and } \mathbf{break} \end{aligned} \right\}^{\textit{line-search}}$$

if
$$\|g^{k,i}\| \le \nu_k$$

Update $\epsilon_{k+1,0} = \epsilon_{k,0}/2$ and $\nu_{k+1} = \nu_k/2$
else set $\epsilon_{k+1,0} = \epsilon_{k,0}$ and $\nu_{k+1} = \nu_k$

A descent-oriented subgradient method

Given a descent-oriented subdifferential $G: \mathbb{R}^n \times (0,\infty) \Rightarrow \mathbb{R}^m$

for
$$k = 0, 1, \dots$$

```
\begin{aligned} &\text{for } i=0,1,\cdots\\ &\text{Generate a direction } g^{k,i}\in G(x^k,\epsilon_{k,0}\,2^{-i}\,)\\ &\text{if } \exists \eta_k\in\left\{\epsilon_{k,0},\cdots,\epsilon_{k,0}\,2^{-i}\right\} \text{ with } f\big(x^k-\eta_kg^{k,i}\big)\leq f(x^k)-\alpha\eta_k\|g^{k,i}\|^2\\ &\text{Update } x^{k+1}=x^k-\eta_kg^{k,i} \text{ and } \mathbf{break} \end{aligned} \end{aligned} \right\}_{\textit{line-search}}
```

if
$$\|g^{k,i}\| \le \nu_k$$

Update $\epsilon_{k+1,0} = \epsilon_{k,0}/2$ and $\nu_{k+1} = \nu_k/2$
else set $\epsilon_{k+1,0} = \epsilon_{k,0}$ and $\nu_{k+1} = \nu_k$

Theorem: Any accumulation point \bar{x} of $\{x^k\}$ is a stationary point, i.e., $0 \in \partial f(\bar{x})$.

Idea: If x^k close to a non-stationary point $\bar{x} \Rightarrow G(x^k, \epsilon)$ close to $G(\bar{x}, \epsilon)$ [for a fixed $\epsilon > 0$] $\Rightarrow x^k$ escapes \bar{x} for sufficiently small ϵ

A general principle: Descent-oriented subdifferential G

• Examples: Goldstein & Bundle directions

A framework of descent algorithms using $G(x, \epsilon)$

A general principle: Descent-oriented subdifferential G • Examples: Goldstein & Bundle directions

A framework of descent algorithms using $G(x,\epsilon)$

Question 2: What if more structures are known? e.g., $f(x) = \max\{f_1(x), f_2(x)\}$

Part 2: Efficient construction for nonsmooth marginal functions

A toy example

For a piecewise smooth function $f(x) = \max\{f_1(x), f_2(x)\}\$,

$$\partial f(x) = \left\{ \overline{\mathbf{y}}_1 \nabla f_1(x) + \overline{\mathbf{y}}_2 \nabla f_2(x) \middle| \overline{\mathbf{y}} \in \underset{y \in \Delta^2}{\operatorname{argmax}} \left[y_1 f_1(x) + y_2 f_2(x) \right] \right\},\,$$

•
$$\Delta^2 = \{ y \ge 0 \mid y_1 + y_2 = 1 \}$$

Goal:

- $G(\cdot, \epsilon)$ is osc
- $\lim_{\epsilon \downarrow 0} G(\bar{x}, \epsilon) = \underset{v \in \partial f(\bar{x})}{\operatorname{argmin}} \|v\|$

A toy example

Goal:

- $G(\cdot, \epsilon)$ is osc
- $\lim_{\epsilon \downarrow 0} G(\bar{x}, \epsilon) = \underset{v \in \partial f(\bar{x})}{\operatorname{argmin}} \|v\|$

For a piecewise smooth function $f(x) = \max\{f_1(x), f_2(x)\}\$,

$$\partial f(x) = \left\{ \frac{\overline{y}_1}{\nabla f_1(x)} + \frac{\overline{y}_2}{\nabla f_2(x)} \middle| \overline{y} \in \underset{y \in \Delta^2}{\operatorname{argmax}} \left[y_1 f_1(x) + y_2 f_2(x) \right] \right\},\,$$

•
$$\Delta^2 = \{ y \ge 0 \mid y_1 + y_2 = 1 \}$$

For any $\epsilon > 0$, define

$$G(x,\epsilon) = \left\{ \left. \overline{y}_1^{\epsilon} \nabla f_1(x) + \overline{y}_2^{\epsilon} \nabla f_2(x) \right| \left. \overline{y}^{\epsilon} \in \underset{y \in \Delta^2}{\operatorname{argmax}} \left[y_1 f_1(x) + y_2 f_2(x) - \frac{\epsilon}{2} \|y_1 \nabla f_1(x) + y_2 \nabla f_2(x)\|^2 \right] \right\}$$

A toy example

Goal:

- $G(\cdot, \epsilon)$ is osc
- $\lim_{\epsilon \downarrow 0} G(\bar{x}, \epsilon) = \underset{v \in \partial f(\bar{x})}{\operatorname{argmin}} \|v\|$

For a piecewise smooth function $f(x) = \max\{f_1(x), f_2(x)\}\$,

$$\partial f(x) = \left\{ \overline{y}_1 \nabla f_1(x) + \overline{y}_2 \nabla f_2(x) \middle| \overline{y} \in \underset{y \in \Delta^2}{\operatorname{argmax}} \left[y_1 f_1(x) + y_2 f_2(x) \right] \right\},\,$$

•
$$\Delta^2 = \{ y \ge 0 \mid y_1 + y_2 = 1 \}$$

For any $\epsilon > 0$, define

$$G(x,\epsilon) = \left\{ \begin{aligned} & \bar{\mathbf{y}}_1^{\epsilon} \, \nabla f_1(x) + \bar{\mathbf{y}}_2^{\epsilon} \, \nabla f_2(x) \ \middle| \ \bar{\mathbf{y}}^{\epsilon} \in \underset{y \in \Delta^2}{\operatorname{argmax}} \left[y_1 f_1(x) + y_2 f_2(x) - \frac{\epsilon}{2} ||y_1 \, \nabla f_1(x) + y_2 \, \nabla f_2(x)||^2 \right] \right\} \\ & \text{subgradient regularization} \end{aligned} \right\}$$

Fact: G is a descent-oriented subdifferential

Comparison with Goldstein & Bundle

A nonconvex piecewise smooth function $f(x) = \frac{1}{4}(x_1 - 1)^2 + \sum_{i=1}^{6} \left| x_{i+1} - 2(x_i)^2 + 1 \right|$ with $f^* = 0$

• SRDescent: the descent-oriented subgradient method + $G(x, \epsilon)$ via subgradient regularization

Comparison with Goldstein & Bundle

Gradient Sampling

Bundle method

Subgradient Regularization

combining (sub)gradients at nearby points

A piecewise linear approximation of $f(x) = \max\{f_1(x), f_2(x)\}$ at x^k :

$$f(x; x^k) = \max_{i=1,2} \left\{ f_i(x^k) + \nabla f_i(x^k)^{\mathsf{T}} (x - x^k) \right\}.$$

The prox-linear update:

$$x^{k+1} = \underset{x}{\operatorname{argmin}} \left\{ f(x; x^k) + \frac{1}{2\epsilon} ||x - x^k||^2 \right\},$$

A piecewise linear approximation of $f(x) = \max\{f_1(x), f_2(x)\}$ at x^k :

$$f(x; x^k) = \max_{i=1,2} \left\{ f_i(x^k) + \nabla f_i(x^k)^{\mathsf{T}} (x - x^k) \right\}.$$

The prox-linear update:

$$x^{k+1} = \underset{x}{\operatorname{argmin}} \left\{ f(x; x^k) + \frac{1}{2\epsilon} ||x - x^k||^2 \right\},\,$$

⇒ A minimax formulation:

$$x^{k+1} = \operatorname*{argmin}_{x} \left\{ \max_{y \in \Delta^{2}} \sum_{i=1}^{2} y_{i} \left(f_{i}(x^{k}) + \nabla f_{i}(x^{k})^{T} (x - x^{k}) \right) + \frac{1}{2\epsilon} \|x - x^{k}\|^{2} \right\}$$

A piecewise linear approximation of $f(x) = \max\{f_1(x), f_2(x)\}$ at x^k :

$$f(x; x^k) = \max_{i=1,2} \left\{ f_i(x^k) + \nabla f_i(x^k)^{\mathsf{T}} (x - x^k) \right\}.$$

The prox-linear update:

$$x^{k+1} = \underset{x}{\operatorname{argmin}} \left\{ f(x; x^k) + \frac{1}{2\epsilon} ||x - x^k||^2 \right\},\,$$

⇒ A minimax formulation:

$$\begin{split} x^{k+1} &= \operatorname*{argmin}_{x} \left\{ \max_{y \in \Delta^2} \sum_{i=1}^2 y_i \left(f_i(x^k) + \nabla f_i(x^k)^\top (x - x^k) \right) + \frac{1}{2\epsilon} \|x - x^k\|^2 \right\} \\ &= x^k - \epsilon \left[\bar{y}_1 \nabla f_1(x^k) + \bar{y}_2 \nabla f_2(x^k) \right], \end{split}$$

where
$$\bar{y} \in \underset{y \in \Delta^2}{\operatorname{argmax}} \left\{ y_1 f_1(x) + y_2 f_2(x) - \frac{\epsilon}{2} \|y_1 \nabla f_1(x) + y_2 \nabla f_2(x)\|^2 \right\}$$

A piecewise linear approximation of $f(x) = \max\{f_1(x), f_2(x)\}$ at x^k :

$$f(x; x^k) = \max_{i=1,2} \left\{ f_i(x^k) + \nabla f_i(x^k)^{\mathsf{T}} (x - x^k) \right\}.$$

The prox-linear update:

$$x^{k+1} = \underset{x}{\operatorname{argmin}} \left\{ f(x; x^k) + \frac{1}{2\epsilon} ||x - x^k||^2 \right\},$$

Observation: For $f(x) = \max\{f_1(x), f_2(x)\}$,

 $G(x,\epsilon)$ via subgradient regularization \iff the prox-linear update with stepsize ϵ

- A dual interpretation of the prox-linear method
- can be extended to composite function (convex) (smooth) by conjugate duality

Subgradien regularization beyond composite structure

For the marginal function:

$$f(x) = \max_{y \in Y} \varphi(x, y)$$

• Y is convex and compact, φ is C^1 and concave in y

Subgradien regularization beyond composite structure

For the marginal function:

$$f(x) = \max_{y \in Y} \varphi(x, y)$$

• Y is convex and compact, φ is C^1 and concave in y

$$G(x,\epsilon) = \bigcup \left\{ \left. \nabla_x \varphi(x,\bar{y}) \, \right| \, \bar{y} \in \underset{y \in Y}{\operatorname{argmax}} \left\{ \left. \varphi(x,y) - \frac{\epsilon}{2} \|\nabla_x \varphi(x,y)\|^2 \right. \right\} \right\}$$

Subgradien regularization beyond composite structure

For the marginal function:

$$f(x) = \max_{y \in Y} \varphi(x, y)$$

• Y is convex and compact, φ is C^1 and concave in y

$$G(x,\epsilon) = \bigcup \left\{ \left. \nabla_{x} \varphi(x,\bar{y}) \, \right| \, \bar{y} \in \underset{y \in Y}{\operatorname{argmax}} \left\{ \left. \varphi(x,y) - \frac{\epsilon}{2} \|\nabla_{x} \varphi(x,y)\|^{2} \right. \right\} \right\}$$

Extension:

• Characterize $\partial f(x)$, and apply subgradient regularization

Takeaways

- 1. A unifying principle for stable descent directions
- $G(x, \epsilon)$ 'gradient' in nonsmooth optimization continuity minimal norm subgradient
- 2. Efficient construction of descent directions
 - Subgradient Regularization for marginal functions
 - For (convex) ∘ (smooth), Subgradient Regularization ←⇒ Prox-linear update

Thank you!

Example: max-of-smooth

$$f(x) = \max_{1 \le i \le m} \left(g_i^\mathsf{T} x + \frac{1}{2} x^\mathsf{T} H_i x \right)$$

Example: min-of-smooth

Example: general marginal functions

$$f(x) = \min_{y \in \mathbb{R}^m} \left\{ (c + Dx)^{\mathsf{T}} y + \frac{1}{2} y^{\mathsf{T}} Qy + ||x||^4 \right\}$$

subject to $b - Ax - 1 \le Wy \le b - Ax$.