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Descent directions in nonsmooth optimization

gx = − argmin
v∈∂ f(x)

∥v∥

• If  is smooth, f gx = − ∇f(x)

The steepest descent direction at x
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Descent directions in nonsmooth optimization

gx = − argmin
v∈∂ f(x)

∥v∥

• If  is smooth, 


• Generally,  is discontinuous in 


— zigzag phenomenon


— may converge to non-stationary points

f gx = − ∇f(x)

gx x

The steepest descent direction at x
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f(x) = max{f1(x), f2(x)}



Descent directions in nonsmooth optimization

gx = − argmin
v∈∂ f(x)

∥v∥

• If  is smooth, 


• Generally,  is discontinuous in 


— zigzag phenomenon


— may converge to non-stationary points


• Improvement:   (stable in )

f gx = − ∇f(x)

gx x

gx ⟶ ?? xregularization

The steepest descent direction at x
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f(x) = max{f1(x), f2(x)}



Goldstein -subdifferential ϵ ∂G
ϵ f(x) = conv{ ⋃

∥z−x∥≤ϵ

∂ f(z)}

1. Goldstein-type methods

Two types of descent algorithms

Idea: -neighborhood of  stabilizes the directionϵ xk
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Goldstein -subdifferential 
ϵ ∂G
ϵ f(x) = conv{ ⋃

∥z−x∥≤ϵ

∂ f(z)}
xk+1 = xk−ϵ

gk

∥gk∥
with gk = argmin

v∈∂G
ϵ f(xk)

∥v∥

1. Goldstein-type methods

Practical issue: computation of gk

Two types of descent algorithms

   Gradient Sampling [Burke, Lewis, Overton ’05], 
  INGD [Zhang, Lin, Jegelka, Sra, Jadbabaie ’20], 
  NTD [Davis, Jiang ’23], …

⟶
approx.

Idea: -neighborhood of  stabilizes the directionϵ xk
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“Bundle”: subgradients & function values over past iterations

 {v1 ∈ ∂ f(x1), v2 ∈ ∂ f(x2), ⋯, vk ∈ ∂ f(xk)}

{ f(x1), f(x2), ⋯, f(xk) }

2. Bundle-type methods

Two types of descent algorithms
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“Bundle”: subgradients & function values over past iterations

 {v1 ∈ ∂ f(x1), v2 ∈ ∂ f(x2), ⋯, vk ∈ ∂ f(xk)}

{ f(x1), f(x2), ⋯, f(xk) }

2. Bundle-type methods

Two types of descent algorithms

xk+1 = xk − αk gk

•  is a convex combination of 


•  closer to larger weights for 

gk {v1, v2, ⋯, vk}

f(xi) f(xk) → vi
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“Bundle”: subgradients & function values over past iterations

 {v1 ∈ ∂ f(x1), v2 ∈ ∂ f(x2), ⋯, vk ∈ ∂ f(xk)}

{ f(x1), f(x2), ⋯, f(xk) }

2. Bundle-type methods

Two types of descent algorithms

xk+1 = xk − αk gk

•  is a convex combination of 


•  closer to larger weights for 

gk {v1, v2, ⋯, vk}

f(xi) f(xk) → vi

-neighborhood of ϵ f(xk)
Idea: -neighborhood of  stabilizes the directionϵ xk
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Perspectives via “enlarged subdifferential”

xk+1 = xk − αk ⋅ gk with gk = argmin
v∈Sk

∥v∥
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Convex set Sk

Steepest descent


Goldstein-type


Bundle-type (for convex  ) f

∂ f(xk)

∂G
ϵk

f(xk) = conv{ ⋃
∥z−xk∥≤ϵk

∂ f(z)}
∂ϵk

f(xk) = {v ∣ f(z) ≥ f(xk) + v⊤(z − xk)−ϵk , ∀z}

Methods



Key message: 


To get a stable descent direction, 

select & combine (sub)gradients in some “neighborhood”!
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Questions:


• What is the general principle?


• What if more structures are known?
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select & combine (sub)gradients in some “neighborhood”!

Key message: 


To get a stable descent direction, 



Part 1: A unifying principle  
for constructing stable descent directions
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Preparation: set-valued analysis
For a set-valued mapping 


• Outer & Inner limits: 




 

S : ℝn ⇉ ℝm

lim sup
x→x̄

S(x) = ⋃
xk→x̄

{accumulation points of {S(xk)}k∈ℕ}

lim inf
x→x̄

S(x) = ⋂
xk→x̄

{limit points of {S(xk)}k∈ℕ}
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Preparation: set-valued analysis
For a set-valued mapping 


• Outer & Inner limits: 




 


• Outer semi-continuous (osc) if   


• Continuous if   

S : ℝn ⇉ ℝm

lim sup
x→x̄

S(x) = ⋃
xk→x̄

{accumulation points of {S(xk)}k∈ℕ}

lim inf
x→x̄

S(x) = ⋂
xk→x̄

{limit points of {S(xk)}k∈ℕ}

lim sup
x→x̄

S(x) = S(x̄)

lim sup
x→x̄

S(x) = lim inf
x→x̄

S(x̄)  is osc, not continuousS( ⋅ )

8



Preparation: set-valued analysis
For a set-valued mapping 


• Outer & Inner limits: 




 


• Outer semi-continuous (osc) if   


• Continuous if   

S : ℝn ⇉ ℝm

lim sup
x→x̄

S(x) = ⋃
xk→x̄

{accumulation points of {S(xk)}k∈ℕ}

lim inf
x→x̄

S(x) = ⋂
xk→x̄

{limit points of {S(xk)}k∈ℕ}

lim sup
x→x̄

S(x) = S(x̄)

lim sup
x→x̄

S(x) = lim inf
x→x̄

S(x̄)

Facts:   is osc;


   is continuous for every fixed  when  is convex

∂ f( ⋅ )

∂ϵ f( ⋅ ) ϵ > 0 f

 is osc, not continuousS( ⋅ )
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A map  is a descent-oriented subdifferential for  if


(G1) Outer limit jointly in  stays in the Clarke subdifferential:





(G2) Separate limit yields the minimal norm subgradient:


G : ℝn × (0,∞) ⇉ ℝm f

(x, ϵ)

lim sup
ϵ↓0, x→x̄

G(x, ϵ) ⊂ ∂ f(x̄)

lim
ϵ↓0 ( lim sup

x→x̄
G(x, ϵ)) = argmin{∥v∥ ∣ v ∈ ∂ f(x̄)}

Descent-oriented subdifferential
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A map  is a descent-oriented subdifferential for  if


(G1) Outer limit jointly in  stays in the Clarke subdifferential:





(G2) Separate limit yields the minimal norm subgradient:


G : ℝn × (0,∞) ⇉ ℝm f

(x, ϵ)

lim sup
ϵ↓0, x→x̄

G(x, ϵ) ⊂ ∂ f(x̄)

lim
ϵ↓0 ( lim sup

x→x̄
G(x, ϵ)) = argmin{∥v∥ ∣ v ∈ ∂ f(x̄)}

Descent-oriented subdifferential

 is oscG( ⋅ , ϵ)

• Sufficient conditions for (G2): 


lim sup
x→x̄

G(x, ϵ) = G(x̄, ϵ), ∀ϵ > 0 and lim
ϵ↓0

G(x̄, ϵ) = argmin
v∈∂ f(x̄)

∥v∥
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A map  is a descent-oriented subdifferential for  if


(G1) Outer limit jointly in  stays in the Clarke subdifferential:





(G2) Separate limit yields the minimal norm subgradient:


G : ℝn × (0,∞) ⇉ ℝm f

(x, ϵ)

lim sup
ϵ↓0, x→x̄

G(x, ϵ) ⊂ ∂ f(x̄)

lim
ϵ↓0 ( lim sup

x→x̄
G(x, ϵ)) = argmin{∥v∥ ∣ v ∈ ∂ f(x̄)}

• The minimal norm subgradient map 


 


violates (G2)!

G : (x, ϵ) ↦ argmin{∥v∥ ∣ v ∈ ∂ f(x)}

Descent-oriented subdifferential
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Examples of descent-oriented subdifferential

Goldstein direction:




Bundle direction (when  is convex):

 


Gradient of Moreau envelope (when  is weakly convex):

    with    

G : (x, ϵ) ↦ argmin{∥v∥ ∣ v ∈ ∂G
ϵ f(x)}

f
G : (x, ϵ) ↦ argmin{∥v∥ ∣ v ∈ ∂ϵ f(x)}

f
G : (x, ϵ) ↦ ∇eϵ f(x) eϵ f(x) := inf

z
{f(z) + (2ϵ)−1∥z − x∥2}

A map  is a descent-oriented subdifferential for  if


(G1)  


(G2)  

G : ℝn × (0,∞) ⇉ ℝm f
lim sup
ϵ↓0, x→x̄

G(x, ϵ) ⊂ ∂ f(x̄)

lim
ϵ↓0 ( lim sup

x→x̄
G(x, ϵ)) = argmin{∥v∥ ∣ v ∈ ∂ f(x̄)}
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A map  is a descent-oriented subdifferential for  if


(G1)  


(G2)  

G : ℝn × (0,∞) ⇉ ℝm f
lim sup
ϵ↓0, x→x̄

G(x, ϵ) ⊂ ∂ f(x̄)

lim
ϵ↓0 ( lim sup

x→x̄
G(x, ϵ)) = argmin{∥v∥ ∣ v ∈ ∂ f(x̄)}

Existence of descent directions

Proposition: For nonstationary point  and constant ,




holds for sufficiently small  and .

x α ∈ (0,1)
f(x̄ − ηg) ≤ f(x̄) − αη∥g∥2, ∀g ∈ lim sup

x→x̄
G(x, ϵ),

ϵ η
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Algorithm

Given a descent-oriented subdifferential  

for  

for  


Generate a direction 

if 


Update  and break 
if 


Update  and 

else set  and 

G : ℝn × (0,∞) ⇉ ℝm

k = 0,1,⋯
i = 0,1,⋯

gk,i ∈ G(xk, ϵk,0 2−i )
∃ηk ∈ {ϵk,0, ⋯, ϵk,0 2−i} with f(xk − ηkgk,i) ≤ f(xk) − αηk∥gk,i∥2

xk+1 = xk − ηkgk,i

∥gk,i∥ ≤ νk
ϵk+1,0 = ϵk,0/2 νk+1 = νk /2

ϵk+1,0 = ϵk,0 νk+1 = νk

A descent-oriented subgradient method

line-search
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Algorithm

• The inner-loop terminates for sufficiently large  (  descent directions at )i ∃ xk
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Algorithm

Idea: If  close to a non-stationary point          close to  [for a fixed ]

                                                 escapes  for sufficiently small 

xk x̄ ⇒ G(xk, ϵ) G(x̄, ϵ) ϵ > 0
⇒ xk x̄ ϵ

Given a descent-oriented subdifferential  

for  

for  


Generate a direction 

if 


Update  and break 
if 


Update  and 

else set  and 

G : ℝn × (0,∞) ⇉ ℝm

k = 0,1,⋯
i = 0,1,⋯

gk,i ∈ G(xk, ϵk,0 2−i )
∃ηk ∈ {ϵk,0, ⋯, ϵk,0 2−i} with f(xk − ηkgk,i) ≤ f(xk) − αηk∥gk,i∥2

xk+1 = xk − ηkgk,i

∥gk,i∥ ≤ νk
ϵk+1,0 = ϵk,0/2 νk+1 = νk /2

ϵk+1,0 = ϵk,0 νk+1 = νk

A descent-oriented subgradient method

line-search

Theorem:  Any accumulation point  of  is a stationary point, i.e., .x̄ {xk} 0 ∈ ∂ f(x̄)
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A general principle: Descent-oriented subdifferential 


• Examples: Goldstein & Bundle directions
G

A framework of descent algorithms using G(x, ϵ)
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Question 2: What if more structures are known?   e.g.,  f(x) = max{f1(x), f2(x)}
smooth
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A general principle: Descent-oriented subdifferential 


• Examples: Goldstein & Bundle directions
G

A framework of descent algorithms using G(x, ϵ)



Part 2: Efficient construction  
for nonsmooth marginal functions
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A toy example
For a piecewise smooth function ,





•

f(x) = max{f1(x), f2(x)}

∂ f(x) = ȳ1 ∇f1(x)+ȳ2 ∇f2(x) ȳ ∈ argmax
y∈Δ2

[ y1 f1(x) + y2 f2(x) ] ,

Δ2 = {y ≥ 0 ∣ y1 + y2 = 1}

15

Goal: 

•  is osc


•
G( ⋅ , ϵ)
lim
ϵ↓0

G(x̄, ϵ) = argmin
v∈∂ f(x̄)

∥v∥



A toy example
For a piecewise smooth function ,





•

f(x) = max{f1(x), f2(x)}

∂ f(x) = ȳ1 ∇f1(x)+ȳ2 ∇f2(x) ȳ ∈ argmax
y∈Δ2

[ y1 f1(x) + y2 f2(x) ] ,

Δ2 = {y ≥ 0 ∣ y1 + y2 = 1}

For any , define
ϵ > 0

G(x, ϵ) = ȳϵ
1 ∇f1(x)+ȳϵ

2 ∇f2(x) ȳϵ ∈ argmax
y∈Δ2 [y1 f1(x) + y2 f2(x) −

ϵ
2

∥y1 ∇f1(x) + y2 ∇f2(x)∥2]
subgradient regularization
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1 ∇f1(x)+ȳϵ

2 ∇f2(x) ȳϵ ∈ argmax
y∈Δ2 [y1 f1(x) + y2 f2(x) −

ϵ
2

∥y1 ∇f1(x) + y2 ∇f2(x)∥2]
subgradient regularization

Fact:  is a descent-oriented subdifferentialG
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Goal: 

•  is osc


•
G( ⋅ , ϵ)
lim
ϵ↓0

G(x̄, ϵ) = argmin
v∈∂ f(x̄)

∥v∥



Comparison with Goldstein & Bundle
A nonconvex piecewise smooth function  with 


• SRDescent: the descent-oriented subgradient method +  via subgradient regularization

f(x) =
1
4

(x1 − 1)2 +
6

∑
i=1

xi+1 − 2(xi)2 + 1 f* = 0

G(x, ϵ)
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Gradient Sampling Bundle method Subgradient Regularization

combining (sub)gradients at nearby points

Comparison with Goldstein & Bundle
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Comparison with the prox-linear method
A piecewise linear approximation of  at :


.


The prox-linear update:


f(x) = max{f1(x), f2(x)} xk

f(x; xk) = max
i=1,2

{fi(xk) + ∇fi(xk)⊤(x − xk)}

xk+1 = argmin
x {f(x; xk) +

1
2ϵ

∥x − xk∥2},
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Comparison with the prox-linear method
A piecewise linear approximation of  at :


.


The prox-linear update:





 A minimax formulation:


f(x) = max{f1(x), f2(x)} xk

f(x; xk) = max
i=1,2

{fi(xk) + ∇fi(xk)⊤(x − xk)}

xk+1 = argmin
x {f(x; xk) +

1
2ϵ

∥x − xk∥2},

⇒

xk+1 = argmin
x {max

y∈Δ2

2

∑
i=1

yi( fi(xk) + ∇fi(xk)⊤(x − xk)) +
1
2ϵ

∥x − xk∥2}
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Comparison with the prox-linear method
A piecewise linear approximation of  at :


.


The prox-linear update:





 A minimax formulation:





,


where 

f(x) = max{f1(x), f2(x)} xk

f(x; xk) = max
i=1,2

{fi(xk) + ∇fi(xk)⊤(x − xk)}

xk+1 = argmin
x {f(x; xk) +

1
2ϵ

∥x − xk∥2},

⇒

xk+1 = argmin
x {max

y∈Δ2

2

∑
i=1

yi( fi(xk) + ∇fi(xk)⊤(x − xk)) +
1
2ϵ

∥x − xk∥2}
= xk − ϵ[ȳ1 ∇f1(xk) + ȳ2 ∇f2(xk)]

ȳ ∈ argmax
y∈Δ2 {y1 f1(x) + y2 f2(x) −

ϵ
2

∥y1 ∇f1(x) + y2 ∇f2(x)∥2}subgradient regularization
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Comparison with the prox-linear method
A piecewise linear approximation of  at :


.


The prox-linear update:


f(x) = max{f1(x), f2(x)} xk

f(x; xk) = max
i=1,2

{fi(xk) + ∇fi(xk)⊤(x − xk)}

xk+1 = argmin
x {f(x; xk) +

1
2ϵ

∥x − xk∥2},

Observation: For , 

 via subgradient regularization        the prox-linear update with stepsize 

f(x) = max{f1(x), f2(x)}
G(x, ϵ) ⟺ ϵ

• A dual interpretation of the prox-linear method


• can be extended to composite function (convex)  (smooth) by conjugate duality∘
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Subgradien regularization beyond composite structure

For the marginal function:


 


•  is convex and compact,  is  and concave in 

f(x) = max
y∈Y

φ(x, y)

Y φ C1 y
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Subgradien regularization beyond composite structure

For the marginal function:


 


•  is convex and compact,  is  and concave in 

f(x) = max
y∈Y

φ(x, y)

Y φ C1 y

subgradient 
regularization

G(x, ϵ) = ⋃ ∇xφ(x, ȳ) ȳ ∈ argmax
y∈Y {φ(x, y) −

ϵ
2

∥∇xφ(x, y)∥2}
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Subgradien regularization beyond composite structure

For the marginal function:


 


•  is convex and compact,  is  and concave in 

f(x) = max
y∈Y

φ(x, y)

Y φ C1 y

subgradient 
regularization

G(x, ϵ) = ⋃ ∇xφ(x, ȳ) ȳ ∈ argmax
y∈Y {φ(x, y) −

ϵ
2

∥∇xφ(x, y)∥2}
Extension:


 


• Characterize , and apply subgradient regularization

f(x) = [max
y

φ0(x, y) subject to φj(x, y) ≤ 0, j = 1,⋯, r]
∂ f(x)
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Takeaways

1. A unifying principle for stable descent directions

•  — ‘gradient’ in nonsmooth optimizationG(x, ϵ)

2. Efficient construction of descent directions

• Subgradient Regularization for marginal functions

• For (convex)  (smooth),  Subgradient Regularization      Prox-linear update∘ ⟺

continuity minimal norm subgradient

20

Thank you!



Example: max-of-smooth
f(x) = max

1≤i≤m (g⊤
i x +

1
2

x⊤Hi x)

Dim. = 200, #pieces = 10 Dim. = 200, #pieces = 100 Dim. = 200, #pieces = 200



Example: min-of-smooth

f(x) = min
1≤i≤m

1
2

∥Ai x − bi∥2

Dim. = 300, #pieces = 10 Dim. = 300, #pieces = 50 Dim. = 300, #pieces = 100



f(x) = min
y∈ℝm {(c + Dx)⊤y +

1
2

y⊤Qy + ∥x∥4}
subject to b − Ax − 1 ≤ Wy ≤ b − Ax .

Example: general marginal functions 

Dim. of  = 300x


