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Amenable functions
Amenable: [Poliquin & Rockafellar, 1992] F has local representation

F = g ◦ f = (convex) ◦ (smooth).

Examples:

F (X) =
∥∥A (XX⊤)− b

∥∥
1
← Phase retrieval, robust PCA, ...

Facts:
▶ Convex approximation

Fxk (x) ≜ g
(
f(xk) +∇f(xk)(x− xk)

)︸ ︷︷ ︸
(convex)◦(linear)

+∥x− xk∥2

2η

▶ Chain rule ∂F (x) = ∇f(x)∗ ∂g
(
f(x)

)

F (x) = |ax2 − b| + x

Prox-linear algorithm for minx F (x) ≜ g(f(x)):

xk+1 = argminx Fxk (x)
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▶ Chain rule ∂F (x) = ∇f(x)∗ ∂g
(
f(x)

)
F (x) = |ax2 − b| + x

Prox-linear algorithm for minx F (x) ≜ g(f(x)):

xk+1 = argminx Fxk (x)

See [Fletcher, 1982, Burke & Ferris, 1995, Lewis & Wright, 2016, Drusvyatskiy &
Paquette, 2019, ...]
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(
f(x)

)
F (x) = |ax2 − b| + x

Prox-linear algorithm for minx F (x) ≜ g(f(x)):

xk+1 = argminx Fxk (x)

Q: Can we go beyond amenable functions by relaxing the smoothness of F ?
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Beyond amenability

min
x∈X

F (x) ≜ φ(f(x)),

where φ is convex and f is NOT continuously differentiable.

Motivating examples:
▶ Inverse optimal value problems [Ahmed & Guan, 2005]

fi(x) ≜

[
min

y
x⊤y

s.t. Aiy ≤ bi

]
∀ i = 1, · · · , m

- x: unknown parameter of a linear program
- {vi}1≤i≤m: (noisy) observation of optimal values
How to estimate the parameter x?

min
x∈X

m∑
i=1

|vi − fi(x)| = (convex) ◦ (nonsmooth)
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Beyond amenability

min
x∈X

F (x) ≜ φ(f(x)),

where φ is convex and f is NOT continuously differentiable.

Motivating examples:
▶ Risk management with Value-at-risk:

min
x

obj
s.t. VaRα(c(x, Z)) ≥ r

- c(x, Z): the random profit of investments parameterized by decision x

δ[r,+∞)
(
VaRα(c(x, Z))

)
= (convex) ◦ (nonsmooth)

e.g. Z =

{ 2 w.p. 1/2
1 w.p. 1/6
−1 w.p. 1/3

⇒ VaR1/3(xZ + 1) = min(2x + 1,−x + 1)
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Asymptotic approachable problems

min
x∈X

F (x) ≜ φ(f(x)),

where φ : R→ R ∪ {+∞} is convex, nondecreasing.

Structure assumption for f :
- Recall for smooth f with Lipschitz gradient:

f(x)−
(
f(xk) +∇f(xk)⊤(x− xk)

)
= O(∥x− xk∥2)

- Attempt:
▶ Suppose f = g − h (g, h convex).(

linearization of g at xk
)
− h(x) ≤ f(x) ≤ g(x)−

(
linearization of h at xk

)
Limitation: only includes locally Lipschitz functions!

▶ Suppose f is approachable difference-of-convex (ADC):

f = lim
k

(
fk ≜ gk − hk

)
gk, hk convex.
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Asymptotic approachable problems

min
x∈X

F (x) ≜ φ(f(x)) = (convex nondecreasing) ◦ (ADC).

Ubiquity of ADC:

Theorem ([Royset, 2020])
∀ lower semicontinuous function f , ∃{fk} such that f = (epi-)limk fk, where

fk(x) = max
1≤i≤pk

[
⟨ak,i, x⟩+ αi

]
︸ ︷︷ ︸

convex

− max
1≤i≤qk

[
⟨bk,i, x⟩+ βi

]
︸ ︷︷ ︸

convex

∀ k.

- More examples: the optimal value functions, value-at-risk are nonsmooth but ADC!
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Asymptotic approachable problems
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{
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2λk
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= ∥x∥
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Convex approximation and algorithms

min
x∈X

F (x) ≜ φ(f(x)) = (convex nondecreasing) ◦ (ADC).

Need to solve
min
x∈X

F k(x) ≜ φ
(

gk(x)− hk(x)︸ ︷︷ ︸
=fk(x)

)
∀ k.

Convex approximation:

φ
(

gk(x)− linearization of hk︸ ︷︷ ︸
(nondecreasing) ◦ (convex)

)
≥ φ

(
fk(x)

)
Algorithm framework:

For k = 1, 2, · · ·

Solve minx F k(x) iteratively by its convex approximation

(within proper tolerance εk ↓ 0)
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Asymptotic stationary

min
x∈X

F (x) ≜ φ(f(x)) = (convex nondecreasing) ◦ (ADC) (P)

Convergence: Any accumulation point x̄ generated by the algorithm satisfies

0 ∈ ∂φ
(
f(x̄)

)
· ∂Af(x̄) , 1

where ∂Af(x) is a “subdifferential” of f dependent on {fk = gk − hk}:

∂Af(x) ≜
⋃

xk→x

{
accumulation points of

[
∂gk(xk)− ∂hk(xk)

]}
.

Q: Is it a necessary condition for a local minimizer of (P)?

1This generalizes the stationary point in [Royset, 2022]
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Good or bad approximation? —Epi-convergence

Epi-convergence:
fk e→ f ⇐⇒ Limk

(
epi fk

)
= epi f

Fact2: (global minimizers)

fk e→ f =⇒
{

accumulation points of
(
εk-argmin fk

)}
⊂ argmin f, ∀εk ↓ 0.

2See monographs [Rockafellar & Wets, 2009], [Royset & Wets, 2022]
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Necessary optimality condition under epi-convergence

min
x∈X

F (x) ≜ φ(f(x)) = (convex nondecreasing) ◦ (ADC) (P)

Convergence: Any accumulation point x̄ generated by the algorithm satisfies

0 ∈ ∂φ
(
f(x̄)

)
· ∂Af(x̄) ,

where ∂Af(x) is a “subdifferential” of f dependent on {fk = gk − hk}.

Q: Is it a necessary condition for a local minimizer of (P)?

A: Under fk e→ f !

Idea:
Any local minimizer of (P) =⇒ A stationary point3 for (P)

↕
0 ∈ ∂φ

(
f(x̄)

)
· ∂Af(x̄)

3NOT computationally friendly
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Extensions

Our analysis can be applied to

min
x

∑
(univariate convex) ◦ (ADC).

Lemma (a monotonic decomposition)
For a univariate convex function φ, ∃ convex φ↑ and φ↓ such that

φ = φ↑(nondecreasing) + φ↓(nonincreasing).
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Conclusion

▶ Beyond amenability: A class of asymptotically approachable problems

min
x

∑
(univariate convex) ◦ (ADC)

▶ Epi-convergence:

=⇒ consistency of the global min + stationary points (subgradient-based)︸ ︷︷ ︸
necessary for the local min
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Thank you!

This talk is based on the work:
▶ Hanyang Li, Ying Cui. Variational Theory and Algorithms for a Class of

Asymptotically Approachable Nonconvex Problems. arXiv:2307.00780 (2023)
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Appendix 1: Subgradient relationship under epi-convergence

Proposition
If f is ADC and fk(= gk − hk) e→ f , then

(a) ∂f(x) ⊂ ∂Af(x);
(b) ∂f(x) ⊂ ∂Af(x) ⊂ conv ∂f(x) if f is locally Lipschitz continuous and

fk = eλk f for any λk ↓ 0.
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Appendix 2: Comparison with prox-linear method

min
x

φ(f(x))

φ is univariate convex, f is smooth with ℓ-Lipschitz gradient

f =
(

f + ℓ

2∥ • ∥
2
)

︸ ︷︷ ︸
convex

− ℓ

2∥ • ∥
2

Prox-ADC:

φ↑
(

f(x) + ℓ

2∥x− xk∥2
)

+ φ↓
(

f(xk) +∇f(xk)⊤(x− xk)− ℓ

2∥x− xk∥2
)

Prox-linear:
φ

(
f(xk) +∇f(xk)⊤(x− xk)

)
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